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Quantum Dynamical System with Hyperbolic 
Instabilities 

M. Kuna 1 and W. A. Majewsk i  2 

Received March 16, 1995 

An analysis of a quantum counterpart of a parametrically kicked nonlinear 
oscillator is given. The method, using as a basic criterion the recently introduced 
quantum characteristic exponents, is analogous to the technique developed in 
classical dynamical system theory. However, our approach to the characterization 
of the stability of an observable's evolution is done in pure quantum terms. 

1. ~ T R O D U C T I O N  

Recently we introduced a new method of studying the Lyapunov instabil- 
ities of  quantum dynamical systems. Let us explain its basic points. 

It seems that the Schr6dinger picture is the popular approach to the 
study of various questions in quantum chaology. However, we shall use the 
Heisenberg picture. We are motivated by the observation that the Heisenberg 
picture as well as Heisenberg's equation of motion are in harmonious relation 
with the very rich algebraic structure of  matrix mechanics (or equivalently 
with the C*-algebraic structure of  the set of  observables). This is exactly 
why within matrix mechanics there is a room for nonlinear dynamical maps 
without having to face the necessity to generalize quantum mechanics. In 
contradistinction, the Schr6dinger form of  the equation of motion does not 
offer such a possibility. Moreover, the time development of  states in this 
picture can be recast in the form of a unitary, hence linear, transformation. 
To be more precise, this statement is valid for nonreduced dynamics [cf. the 
examples with Hartree-type dynamics in Majewski and Kuna (1993a)]. In 
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other words, although the equivalence of the SchrOdinger and Heisenberg 
pictures seems to be perfect for all linear problems in quantum mechanics, 
for questions concerning a proper quantum treatment of stability questions 
the Heisenberg picture seems to be the appropriate one. 

To illustrate this idea let us consider a very simple example. Let us 
assume that the Hamiltonian H of the system is a function H = H(A, B) of 
noncommuting dynamical variables A and B. Then, the function 

A ~ eiH(a'B)tAe -iH(A'B)t (1) 

being a solution of a nonlinear operator differential equation, does not have 
to be linear while 

t~ ~ e-iH(a'B)tt~ (2) 

is linear. Moreover, the Heisenberg equation of motion, for H = H(A, B), 
can be a nonlinear operator equation, although a solution is of course a one- 
parameter family of linear operators. Therefore, it is natural to examine 
various stability properties of nonlinear operator functions appearing in the 
Heisenberg picture. 

The aim of this paper is to show that using our method it is possible to 
examine the stability properties of dynamical maps of type (1) without any 
modification of the functional form of the fixed Hamiltonian. This will be 
done by a careful choice of dynamical variables: quadrature operators in our 
example. In order to avoid any confusion we stress that our choice of dynami- 
cal variables is done in such a way that we do not dhange annihilation and 
creation operators. In other words we do not violate the quantization procedure 
(see Section 3). We shall use the algebraic properties of the structure generated 
by a* and a. 

The paper is organized as follows: in Section 2, a brief description of 
quantum characteristic exponents is given. The main part of the paper, Section 
3, concentrates on a detailed analysis of the quantum counterpart of a paramet- 
rically kicked nonlinear oscillator. Our results allow us to say that the pre- 
sented model is an example of a quantum system with very unstable dynamics 
for some set of parameters describing the model. Very recently another 
example of quantum systems with unstable dynamics was given, namely 
Emch et al. (1994) constructed a noncommutative Anosov system. 

Finally, let us remark that a quite another characterization of the tendency 
of noncommutative systems to develop a sort of internal independence can 
be given in terms of the C*-algebraic generalization of K-S entropy, K 
systems, and mixing systems (cf. Benatti, 1993). However, as a noncommuta- 
tive generalization of the Pesin formula is unknown, a comparison of these 
two approaches to a description of the random behavior of quantum systems 
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is still impossible. Nonetheless, it should be pointed out that both descriptions 
are done in the matrix formulation of quantum mechanics. 

2. D E F I N I T I O N S  

In this section we present a brief account of definitions and properties 
of quantum exponents. To fix the notation let us recall basic definitions of 
classical dynamical system theory. A classical dynamical system is defined 
as a pair ((f~, ~, P), (-r)) where (fl,  ~, P) is a probabilistic space, l~ a 
locally compact, Hausdorff space, and {'r: f~ --4 f~} is a measure-preserving 
transformation. Thus, the (discrete) evolution of the system is given by the 
iteration of "r. It is well known that if f~ admits a differential calculus, then 
Lyapunov exponents can be defined as the following limit: 

h el = lim 1 log[Ox'r'(y)[ (3) 

where Dx"~(y) denotes the directional derivatives of -r composed with itself 
n times at a point x in a direction y (Eckmann and Ruelle, 1985). One can 
show that a positive Lyapunov exponent measures the average rate of growth 
of the separation of orbits which at time zero differ by a small vector. This 
positivity of the Lyapunov exponent can be considered as a basic condition 
for deterministic chaos in classical dynamical systems. 

However, an application of h c~ to physical problems is limited since 
nature, at least on a microscopic level, is described by quantum laws. To get 
a proper definition (Majewski and Kuna, 1993a,b) let us replace the probabilis- 
tic structure (f~, 2s P) in the above definition of a dynamical system by a 
noncommutative probability space (~/, +), where ~ / i s  a C*-algebra and qb 
is a state on ~ .  Time evolution will be described by a quantum stochastic 
map r: ~ ---) ~ ,  i.e., a map "r such that: 

(i) "r is positive: 'r(A*A) >- 0 for all A e ~ .  
(ii) "r(1) = 1. 

Let us remark that we do not assume the linearity of -r. Consequently, 
we defined the quantum counterpart of the dynamical system (~/, % +). 

For such a system (~ ,  % +) we can define (Majewski and Kuna, 1993a,b) 

kq(T; X, y) : lim 1 logll(oS)(y)l l  (=- ~kq) (4) 

where we have used the same notation as in (3), i.e., Dx'rn(y) denotes the 
directional derivatives of "r composed with itself n times at a point x in a 
direction y. However, now x and y are, in general, noncommutative elements 
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of (C*-algebra) ~ .  This limit, if  it exists, will be called the quantum character- 
istic exponent. 

As the first step in a discussion of the basic properties of h q it should 
be shown that )k q is well defined. We can give an example of sufficient 
conditions for the existence of }k q. Namely, let us assume: 

(i) 'r is a completely positive map (in fact, this is the most important 
assumption). 

(ii) II'r~(O)ll -< C1 for all l E N and some positive C1, and 

Or -- {x ~ 0: II'r'(x)ll-< qllxll + II'r'(0)ll] ~ O (5) 

for some positive C2 and all l e N. 
(iii) We have 

IlOx~(Y)ll > Ck(x, y) 

for some positive C(x, y) and all large k c N. 

Under the above assumptions one can prove: 

Theorem (Majewski and Kuna, 1993a): Let "r: ~ ---> ,~/be a map such 
that the assumptions (i)-(iii) are satisfied. The limit 

lim 1 logllDxrn(y)l I (6) 
n~| n 

exists for x E 07. 
Consequently, ~.q is a well-defined notion for the nonempty class of 

stochastic maps. Let us list the basic properties of the quantum exponents 
(Majewski and Kuna, 1993a, b): 

1. We have 

)kq(x, y )  :- ~.q(x, ay )  for a E R\{0} 

2. Since the map y --> Dx'rn(y) is linear, it is natural to set 

)kq(x, O) = --00 

3. Let hq(x, y) > hq(x, z) > - ~  and additionally let "r satisfy assumption 
(iii) in the direction y + z. Then 

kq(x, y + az) <- hq(x, y) 

f o r a  ~ R. 
4. The function y --~ kq(x, y) as the limit of continuous functions (in y) 

is, in general, a Baire function of type I. In particular, the set { y l y -~ hq(x, y) 
is a continuous function} is dense in ~ .  
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5. Let ~ /be  the C*-algebra generated by a fixed self-adjoint operator 
and identity on some Hilbert space, i.e., ,~ is an Abelian C*-algebra. Conse- 
quently, such a dynamical system (~, % ~b) should be considered as a classical 
one. Then, if some mild technical conditions are met (Majewski and Kuna, 
1995) the definition (4) leads to the largest classical characteristic exponent. 

The above list of properties of •q are reminiscent of the basic ones for 
characteristic exponents (Arnold and Crauel, 1991; Pesin, 1991). Therefore, 
we conclude that h q is the well-defined quantum counterpart of the character- 
istic exponent. 

3. A MODEL 

To provide a physical Hamiltonian model with unstable trajectories of 
quantum evolution we study the quantum kicked nonlinear oscillator. In 
particular, we want to show in pure quantum terms that this model exhibits 
a sensitive dependence on initial conditions, the most important signature 
of chaos. 

Let us recall that although it is easy to give a (mathematical) model 
with positive quantum characteristic exponent (Majewski and Kuna, 1993a), 
there still is no model of a purely quantum mechanical system with quantum 
chaos (Kuna and Majewski, 1993). This is why we reexamine the Milburn 
model (Milburn, 1990; Milburn and Holmes, 1991; Wielinga and Milburn, 
1992). The analysis of this model by Milburn et al. shows the presence of 
signatures of quantum chaos. However, these investigations are not done in 
pure quantum terms. Therefore the analysis of the model should be supple- 
mented and this is the aim of this section. We shall show that for some values 
of parameters describing the model, the quantum characteristic exponent )k q of 
quadrature components of the electric field for the considered time evolution is 
positive for one quadrature operator and is negative for the canonically 
conjugate one. Such behavior, with a slight abuse of language, will be codified 
in the term genuine quantum chaos. 

Let us turn to the description of the Milburn model. This model is the 
quantum optical counterpart of a parametrically kicked nonlinear oscillator. 
Its Hamiltonian His  of the form (Milburn, 1990; Wielinga and Milburn, 1992) 

H = HNL q'- HpA (7) 
where 

HNL ----~ (a*)2a a (8) 
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and 
+ ~  

H p A = i h ~ [ ( a * )  2 - a  2] ~] 8 0 - n ' r )  (9) 

In above formulas, • is a constant proportional to the third-order nonlinear 
susceptibility of the medium, a stands for the boson annihilation operator, K 
is the coupling constant (the product of the pump field amplitude and the 
second-order nonlinearity in the parametric gain medium), and "r is the period 
of free evolution (i.e., the evolution described by H ~ )  between each pump 
pulse. These pump pulses mimick kicks of the harmonic oscillator. The 
Heisenberg equation of motion for the nonlinear hamiltonian HNL gives the 
following evolution for a: 

a(t) = e-ixta*aa(O) (10) 

Then, the time evolution of the system can be described (Milburn, 1990; 
Wielinga and Milburn, 1992) by the equation 

a(t+~) = a(t~)cosh r + a*(t~)sinh r (11) 

where t, + (t~) is the time just after (before) the passage of the nth pulse, the 
time dependence of a on t is given by (10), and r is the effective constant 
for the kick. In the case of a pulsed pump field, r is determined by the 
integrated time-dependent amplitude of the pump (Milburn, 1990, p. 6568). 

Now we want to calculate quantum characteristic exfgonents )k q for the 
evolution ~ given by (10) and (11), i.e., ~a(t+n) = a(t+,+l), and a quantum 
characteristic exponent is defined by 

d e f  1 
)kq(~ x, y) = lim - log II (Dx~ I I (12) 

n--)ao n 

where (D2~n)(y) denotes the derivatives of 0~ composed with itself n times 
at x in direction y. To do so, let us rewrite (10) and (11) in terms of self- 
adjoint operators ~ and ~ where �9 and II are defined by 

a =dp  + i I I  (13) 

Then, (10), (11), and their conjugate equations can be written as 

r c [~( t+))  = e_i~/ff e os ~Bo e" sin i~Bo ) f~( t+- l ) )  
~H(t+)J \ - e  -r sin ~B0 e -r cos l~BoJ~II(t+_x)] 

(14) 

where i~ = X"r and B0 = a*a - 1/2 = (~z + I - [ 2  __ 1). 
Let us remark that (14) gives a nonlinear evolution since the matrix on 

the right-hand side of (14) is a nonlinear function of operators II and ~. 
Now let us change the time evolution (14) slightly. Namely, we impose a 
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control over the possible number of photons in the propagator of free evolu- 
tion. We ought to do this modification in order to have a real influence of 
kicks on the mode. Therefore, taking an arbitrary but finite number N, we 
do not change the physical properties of the considered evolution. In order 
to carry out the considered change let us denote by Pn the projection on the 
n-photon state. Clearly 

[HNL, PN] = 0 = [a'a, PN] 
where PN = EN=I Pn. Thus we replace (14) by 

(dP(t+~)~ ( e r ersin p~B ~{dP(t+,_l)~ I-I(t+n ) ) e_i~ n cos p~B 
= - e  -r sin ~B e -r cos ~B)\II(t+,_,)) (15) 

with B = (B0"PN) �9 P~. This procedure can be legitimated recalling that 
real physical experiments deal with light beams with finite number of photons. 
Next, in order to solve the nonlinear operator equation (15), let us consider 
the case 

A 2 -- cos z ~B cosh2r - 1 > el  (16) 

with arbitrary small e > 0. The opposite case A: < - e l  can be treated in a 
similar way. Let us observe that the following condition for the parameter t z, 

( 2 k -  1)" 2 for a n y k  E X a n d n  EN0} (17) r 

where No = { 1 . . . . .  N}, implies the nontriviality of the operator A (A r 
- 1 ) .  Then, for large enough r, the equality (16) is satisfied. The condition 

b e  Y = { x e R ; x > O , x ' ( n - 1 ) - C k ' ~ r f o r a n y k e 3 C a n d n e N o }  

(18) 

implies that the function sin-llxB is well defined (note that the spectrum of 
B is equal to { 1/2 . . . .  (N - 1/2)}). Finally, 

I x e Z = { x ~ R ; x > O , x ' ( n - 2 ) r  +-arccos[(coshr)-Z]+k'rr 

any k e N and n e N0~ (19) for 
J 
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implies that A -1 is well defined. In the sequel, we shall assume that 

I.~ E X f )  Y fq Z 

Under the above assumption we can rewrite (15) as 

where 

dP( t+)~ = _-,,aZnr~n-l{dP(tn+-l) 
i f ( t+ ) /  ~ . r o r  tii(t+_,)) 

1 
P = - e - r ( s in  ixB)-l(cos p~B sinh r + A) 

- e - r ( s in  ~B)-l(cos IxB sinh r - A) 

1,-, = ( - c o s  ~B sigh r (Z4)-'  + �89 - e  ~ sin ~ 8  (2a)- l~  
~ cos IxB sinh r (2,4) -1 + �89 e r sin ~B (2A) -1 ] 

(20) 

and 

D = {cos IxB cosh r - A 
0 

Therefore 

(21) 

(22) 

(23) 

o / o/ 
(24) 

cos IxB cosh r + A A2 

( qb(t+))  = e-inW2pDnp-t(~HlOl) 
rI(tD} (21a) 

where we have used the fact that D does not depend on tn. Now we are in 
a position to study the Lyapunov instabilities of  the quadrature components 
of the electric field during the time evolution given by the formula (21a). 
To do so, let us define the quadrature operators 

1 dpe = -~ [ei ,a + e - i e a  *] (25) 

and 

1 
1-It = ~t [ei~a -- e- lEa*] (26) 

The operators H ~ and qb E are related to the amplitude components of the 
electric field (Yurke, 1989). Clearly 
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Moreover, 

1 ( ~ ) 2  + (17,)2 ___ a*a + ~ = (~)2 + (H)2 (27) 

( dPe(t +) -- d~(t+)~ e_in~/2pDnV_l(dP'(O) - dP(O)~ 
n~(tD n(t+~)] = ~17~(0) n(o)] (28) 

where we have used the invariance of the time evolution equations with 
respect to the transformation a -4 ei'a [cf. (27)]. To avoid confusion, let us 
emphasize that (28) does not "smuggle" a linearity into our argument; cf. 
see the violation of homogeneousness in (28). In other words, we have used 
the special invariance property (27) for (21a). 

Therefore 

D,(II') (n)) (29) 

p o <  e 
D,(II~) (~)) (30) 

Let us remark that (30) strongly converges to (29) as 8 -4 oo. Consequently, 
(30) is a well-defined approximation of  the genuine dynamics. 

Then, introducing new variables ~ ,  I-I 

(~)i~i~ def= p_a(qb ' ~ \  IIa] (31) 

where D,O" = lirn,_m[(d~" - qb)/e](D,II ~ = lim,_~0[(II" - II)&]). 

Remarks. (i) Note that D,O" is well defined as the derivative with respect 
to the parameter e of the one-parameter family qb, of closed operators. 
Similarly, D~17" is related to 17~. 

(ii) The operators �9 ", 17" and the phase angle e can be used to characterize 
squeezed states (Yurke, 1989). 

(iii) Let us recall that the basic motivation for the study of characteristic 
exponents is the problem of stability. Thus, here we study the stability proper- 
ties of the evolution of quadrature operators in the Milburn model with respect 
to the phase angle e. 

As the final step of calculating a positive quantum exponent for the 
considered model of the kicked oscillator let us introduce the following cutoff 
in the (~, 17) variables. We replace �9 (1I) by r = f+_~ h dE,~(h) [17~ = 
f+_~ h dEn(k)], where 3 ~ R +, and {E.(K)} ({En(h)}) stands for the spectral 
resolution of dp (17). 

Consequently, we will consider 
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one has [cf. the second equality in (23)] 

I I O ~ l l  = IlATfI~(0)ll 

I IO, f I~ l l - - I IAf l~(0) l l  

(32) 

(33) 

Further, let us remark  that 0 does not belong to the spectrum of  A2. Hence,  
0 is in the resolvent  set o f  A2 and A2 is a bijection. Therefore,  

I I A ~ ( 0 ) I I - -  CIIA~II (34) 

where  

c =  sup II~'~(O)gll ( r  (35) 
g: g = A~y 

On the other hand, the fo rm of  A 2 implies 

IIA~II = IIA211 ~ (37) 

for any k E N.  Consequent ly  

hq(1Fl~) = l im ? 1 logllO~fI~(tk) II 
k--~.oo K 

= l i m  1 logllA~ll = logllA211 (38) 
k.--~oo K 

Moreover ,  we observe  that 

IIAlll = sup(lcos Nn - 3) cosh r - [cos2p~(n - if) cosh2r - 111/2 I, 
n~lVol 

cosh r - (cos2li cosh2r - 1)1/21 } icos 

--  [cos I~(no - 3)  cosh r - [cos2~(no - 3) c~ - 1] 1/2] (39) 

IIA211 --- sup~lcos ~(n - 3) cosh r + [cosall(n -- 1) cosh2r _ 111,zl, 
n~No(" 

cosh r + (cos21a, cosh2r - 1)1/21 } Icos p~ 

---- I c~ I l (no  - 3)  cosh r + [cos2~(no - 3) c~ - 111/2[ (40) 

where  no e No U 3" Then, under  our assumptions [see (18)] one can distinguish 
the fol lowing three cases: 
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,i, cos  (no l) cos  r l 

(i) ~ IIA, II > 1 and IIA21t < 1 

(ii) cos2p~(no - �89 cosh2r < 1 

(ii) ~ IIA~II = 1 and IIA211 = 1 

(iii) cos la,(no - �89 cosh r < - 1  

(iii) = IIAlll < I and IIA211 > 1 

Now, it is clear that for large enough r [r is the effective constant for kicks 
introduced in (11)] the norm of A2 is larger than 1. Therefore, we can conclude 
that for some values of ~, r (i.e., X, "r, K) the quantum characteristic exponent 
h q for the quantum variable 1~I~ is strictly positive. 

4. CONCLUSION 

We have shown that, depending on the values of the parameters (X, -c, 
K), the quadrature operators H" and qb" exhibits chaotic [(i) and (iii)] or 
regular [(ii)] behavior. In the irregular case [e.g., (iii)] the principal feature 
of classical chaos-- the hyperbolic structure--manifests itself in the existence 
of a positive characteristic exponent for one canonical coordinate (II ") and 
a negative one for the other (~ ') .  Let us repeat that the operators II" and qb, 
are related to the amplitude components of the electric field. Moreover, it 
can be demonstrated (Yurke, 1989) that a homodyne detector measures these 
operators. It is also obvious that in polyparametric cases physics as well as 
mathematics allow numerous combinations of stability in certain directions 
and irregularity in others. Therefore, we can expect chaotic evolution of the 
canonically conjugated quadrature operators in our model for some values 
of • "r, K and regularity for others and we get a confirmation of such behavior. 
Moreover, let us recall that the analysis done by Milburn suggests similar 
conclusions. We would like to stress that, in general, our method does not 
lead to a repetition of semiclassical results (Kuna and Majewski, 1993). The 
fact that we used some technical assumptions does not mean that we "smug- 
gle" a classical description into our analysis. Let us finish with the conclusion 
that working within the "pure" quantum description of a genuine nonlinear 
quantum system, we are able to speak rigorously about hyperbolic instabilities 
of the quantum evolution without any (semi)classical limits and other (semi)- 
classical approximations leading to semiquantal models. 
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